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A process of generation and convergence of shock waves of arbitrary form and 
strength in a confined chamber is investigated theoretically. The chamber is a 
cylinder with a specifically chosen form of boundary. Numerical calculations of 
reflection and convergence of cylindrical shock waves in such a chamber filled with 
fluid are performed. The numerical scheme is similar to the numerical procedure 
introduced by Henshaw et al. (1986) and is based on a modified form of Whitham’s 
theory of geometrical shock dynamics (1957, 1959). The technique used in Whitham 
(1968) for treating a shock advancing into a uniform flow is modified to account for 
non-uniform conditions ahead of the advancing wave front. A new result, that shocks 
of arbitrary polygonal shapes may be generated by reflection of cylindrical shocks off 
a suitably chosen reflecting boundary, is shown. A study is performed showing the 
evolution of the shock front’s shape and Mach number distribution. Comparisons 
are made with a theory which does not account for the non-uniform conditions in 
front of the shock. The calculations provide details of both the reflection process and 
the shock focusing. 

1. Introduction 
Shock focusing remains an enduring problem. The reasons for this can be found 

in the phenomenon’s continuing ability to provide surprising results. This acts as 
a touchstone for a number of interesting theoretical and experimental issues. The 
technical applications of shock waves further motivate their study. These range 
from problems caused by erosion to the deliberate cutting of hard surfaces. Medical 
applications, such as the disintegration of kidney and bladder stones, are rapidly 
expanding. 

Experimental investigations of the behaviour of focusing wave fronts for a wide 
range of geometries and shock strengths have been presented by Sturtevant & 
Kulkarny (1976). Useful theoretical results concerning the nonlinear properties of the 
focusing process can be found in Cramer & Seebass (1978) and Cramer (1981). Recent 
papers by Henshaw, Smyth & Schwendemann (1986) and Schwendeman & Whitham 
(1987), using Whitham’s theory of geometrical shock dynamics (1957, 1959), have 
been applied to the propagation of shocks of arbitrary strength into uniform media. 
Several key problems in the area of shock wave propagation have been analysed by 
means of a numerical procedure introduced in Henshaw et al. (1986). The procedure 
is based on the idea of shock wave tracking along rays perpendicular to the shock 
front’s position. Propagation of shock waves in curved channels and diffraction of 
shocks by wedges and cylinders is investigated in Henshaw et al. The convergence 
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of polygonal-shaped, closed shock fronts is discussed by Schwendeman & Whitham 
(1987). 

Recently cavitation, induced by the passage of shock waves in a liquid, has been a 
subject of experimental, numerical and theoretical work. Studies in which the passage 
of a plane shock over a cavity have been carried out by Dear, Field & Walton (1988) 
and Lesser & Finnstrom (1987). A more complex situation is examined by Gustafsson 
(1987). Here the shock wave propagates in a confined thin cylinder with an elliptic 
cross-section. A cylindrical shock wave is generated at one of the focal points of the 
chamber. The shock then reflects off the chamber wall and converges at the second 
focus. Linear theory was used in the calculations. Gustafsson found that the pressure 
distribution on the converging cylindrical wave front was non-homogeneous. The 
shock strength was shown to depend on the angle around the focus. This occurs 
even though the pressure carried by the initial wave is uniform. Gustafsson’s device 
consisted of a fluid-filled elliptic chamber. The shocks were created by an electric 
discharge at one focus of the ellipse and converged at the other focus. This provided 
a convenient source of convergent cylindrical shocks. This type of device can be 
used in combination with a gel technique. The latter, which was developed for liquid 
impact studies, consists of the casting of a layer of gelatin from which any chosen 
shape may be cut and placed at a desired position (Dear & Field 1987). Therefore 
we suggest that this combination of techniques may serve for an experimental study 
of shock-induced cavity collapse, where the cavity shapes may be tailored to specific 
needs. A possible major drawback of such a device appears to be that the reflected 
cylindrical wave converges at the other focus with a pre-defined pressure distribution. 
In an experimental device, such as the one described above, it is desirable to control 
and vary the pressure distribution around the cavity. 

The idea of influencing the pressure distribution on the reflected shock front by 
means of the chamber geometry has been developed by Apazidis (1992, 1993, 1994). 
This series of papers investigate shock propagation in cylindrical chambers both 
with elliptic and parabolic cross-sections. In addition the latter paper examines 
three-dimensional ellipsoidal and paraboloidal chambers. A major difference from 
Gustafsson’s work is that the height of the chambers in the case of a two-dimensional 
configuration was not constant but varied slowly over the chamber domain. Thus a 
perturbed form of the two-dimensional calculation was carried out. It was shown that 
it is possible to tailor the flow and the pressure distribution behind the converging 
shock by changing the form of the chamber. A relation between the equation defining 
the upper surface of the chamber and the pressure distribution on the converging 
wave front was obtained. These calculations form a basis for the design of a shock 
generating device in which the strength distribution over the converging shock may 
be controlled. Such a device allows the experimental study of the influence of various 
types of pressure distributions on the collapse process. The main results of Apazadis’ 
series of articles show that it is possible to create a cylindrical or plane shock wave 
with a predetermined pressure distribution by appropriate choice of the geometrical 
form of the reflector. The problem of shock reflection and propagation in these types 
of chambers has been treated analytically within the realm of the linear theory of 
sound pulses as described by Friedlander (1958). While this means that the results 
apply to weak shocks, they are of considerable use as guidance for our understanding 
the nonlinear case. The form of the reflector boundary was either elliptic or parabolic 
in two-dimensional configurations or ellipsoidal or paraboloidal in three-dimensional 
configurations. Therefore the reflected shock fronts were confined to cylindrical, 
spherical or plane shapes. 
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In the present work we consider other types of reflector boundaries. These types of 
reflectors will produce shock waves of arbitrary form and thus introduce a new degree 
of freedom in the shock generation process. The present analysis is not restricted 
to weak shocks but deals with shocks of arbitrary strength. The calculations are 
performed by means of a numerical procedure. This procedure is a modified form of 
the one introduced in Henshaw et al. (1986) based on geometrical shock dynamics. 
The modifications involve two aspects of the calculations. Straightforward minor 
changes, which like previous works make extensive use of spline techniques, have some 
interest in their own right. This is required for the treatment of reflections which 
require some new procedures. The second modification is of greater importance 
and involves the treatment of a non-uniform flow in advance of the shock. This 
is necessary as we are treating shocks of arbitrary strength which are created by a 
reflection process. Thus the reflected shock is propagating into the disturbance created 
by the incident wave. The technique used for this is based on the invariance properties 
of the problem to Galilean transformations, as pointed out in Whitham (1968). Extra 
terms are introduced into the equations of motion due to the non-uniformity of the 
flow. Comparisons are made with calculations that ignore the flow non-uniformity or 
even the flow itself ahead of the shock. The results of the calculations show that it may 
be possible to create shock waves of arbitrary form. Of special interest are polygonal- 
shaped shocks with plane sides and sharp corners. Such shocks have been considered 
in a number of the above references. In the present paper particular attention is given 
to the possible experimental creation of such shocks. The convergence and evolution 
properties discussed by previous workers are also confirmed and extended. 

2. Formulation 
The main objective of the present work is to examine the possibility of the gen- 

eration of two-dimensional polygonal-shaped shock waves by a process of reflection 
from a smooth boundary. The sharp corners will arise as a feature of the shock re- 
flection and focusing. For this purpose consider a confined two-dimensional chamber 
filled with fluid. The process is initiated by the creation of a cylindrical shock wave 
with constant Mach number distribution along the shock front. This is generated at 
the centre of the chamber. This could be done by a controlled explosion or electric 
discharge as in the work of Gustafsson (1987). A convenient representation of the 
chamber boundary is given in parametric form by the equation 

1 
1 + E cos(n4) * 

r =  

This can be interpreted as representing a perturbation of a circle by a cosine function 
multiplied by a small parameter E.  The resulting shapes of the reflector boundary 
for n = 4 and 5 are shown in figure 1. The motivation for this choice is that it is 
well known that a circular wave front will reflect as a plane wave off a parabolic 
boundary. While this is not a parabolic boundary, the regions around the maxima 
and minima quadratically approximate one. Therefore, dependent on the periodicity 
of the perturbation, it is expected that such a reflecting surface will produce a form 
that will tend to planarity about these points. It will be seen that this planarity is 
further emphasized by the shock convergence. This follows the work of Whitham, 
where the tendency to planarity of shocks is explicitly calculated. 

Three different stages of shock propagation in the chamber are identified. The first 
stage is the propagation of the initial outgoing cylindrical shock. This stage starts 
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FIGURE 1. Reflector boundaries for (a) n = 4 , ~  = 0.05 and (b) n = 5 , ~  = 0.035. 
The corresponding circles are shown by dashed lines. 

with the formation of the shock at the centre of the chamber. The shock is assumed 
to have uniform strength along its front. The strength will vary with the propagating 
shocks position. This stage is completed when the first points of the outgoing wave 
come into contact with the reflector boundary. This initiates the second stage, which is 
the reflection itself as described in $3 .  The end of the reflection stage is reached when 
a connected reflected wave front is formed, i.e. the reflection process has terminated. 
The last stage of this process is the convergence of the fully formed reflected wave. 
The convergence of the wave is investigated in $4. 

This assumption of uniform strength provides a standard solution of the initial stage 
and therefore any particular shock strength may be chosen for the commencement of 
the reflection stage. In the numerical calculations the shock strength at this point is 
taken as M = 2, which provides the necessary initial data. In some of the calculations 
a ‘blast-wave’ similarity solution is employed. The energy is normalized so as to 
fulfil the above Mach number condition at reflection. It is important to realize that 
the shock strength distribution will be changing during the reflection phase. The 
value of M = 2 only applies at the initial points of contact of the incident shock 
with the boundary. Oblique shock relations are used to calculate the local reflection 
properties. Therefore the calculation is fully nonlinear. Because the angle of incidence 
is extremely oblique there are no evident problems with Mach reflection effects. 

Our calculations use geometrical shock dynamics or GSD developed by Whitham. 
This theory extends the ideas of geometrical optics or wave propagation. The main 
idea is that the speed of propagation along the ray depends on the value of the Mach 
number at the considered location. The value of the local Mach number M is in turn 
coupled to the ray-tube area A by means of a relation between the area of a ray tube 
and the shock Mach number, called the A-M relation and given by 

where MO and A0 are the initial values of the Mach number and ray-tube area 
respectively. From a differential geometric point of view the relation represents the 
Jacobian of the transformation of the shock front as it propagates. Function f(M) 
in the A-M relation was obtained by Whitham (1957) by writing the conservation 
equations of motion in characteristic form and applying the shock relations along the 
characteristic in the direction of propagation. This ad-hoc approach provided a closed 
set of equations leading to the above relation. In addition to a number of heuristic 
arguments justifying such a scheme there is now a considerable body of evidence 
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indicating that it leads to excellent results in a number of cases. Some exceptions 
have been noted by Prasad (1992), who claims to have developed a form of GSD as 
a first stage of a rational approximation technique for shock propagation problems. 
It is also claimed in Prasad’s work that in some cases GSD may lead to erroneous 
results. The ultimate resolution of this matter must rest on experimental evidence, 
and the present calculations combined with future experiments may be of some help 
in this matter. Following Whitham’s approach the function f(M) takes the form 

where 

i ( M ) =  l+-- ( 1 + 2 P + @  ’> , ( Y+l P 

(y - 1)M2 + 2 
” = 2yM2 - ( y  - 1)’ 

(4) 

and where y is the ratio of specific heats (= 1.4 for air). A similar relation follows for 
liquids. Water is a particular example where y may be taken as approximately 7 and 
is interpreted as the exponent in the Tait equation for the pressure density equation 
of water. 

The equations of geometrical shock dynamics, by means of which the shock front 
positions Y(X, y) are calculated, may be put in the following form, see Whitham (1974), 
Henshaw et al. (1986) : 

where n is the normal to the shock front. This system of nonlinear differential 
equations together with the A-M relation provides a complete set of equations for 
evaluation of the shock front position and strength as a function of time. These 
equations are treated following a procedure based on that of Henshaw et al. (1986). 

2.1. Propagation into a non-uniform region 
The above equations, used by previous investigators, are derived under the assumption 
of quiescent conditions ahead of the advancing shock. Clearly this is not the case 
under the conditions of reflection. It can be argued that the flow field created by 
the incident shock rapidly decreases in amplitude and that one only has to make an 
additive or linear correction to the result. This is implicit in the work of Gustafsson 
(1987). A modification of GSD was carried out by Whitham (1968) to account for 
uniform conditions ahead of the shock. In this elegant approach Whitham used 
Galilean invariance to transform the basic GSD equations to a reference frame which 
was at rest with respect to the oncoming flow. Among other corrections, this showed 
that the ray tubes would not be orthogonal to the shock surfaces. In the following 
we follow this idea to develop equations for the case of non-uniform conditions. The 
basis for this is that the shock is merely a surface of discontinuity and possesses no 
mass, therefore it is possible to use a ‘local’ Galilean transformation to derive suitable 
equations of motion from the formulation in a frame with no flow ahead of the 
shock. Because of the gradient in flow conditions new terms appear in the relevant 
equations. 

To generalize Whitham’s formulation to a non-homogeneous flow field ahead of 
the shock consider two coordinate frames F and F’. Let F be a fixed frame described 
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by (x,y, t )  and F’ a moving frame in which the medium ahead of the shock is locally 
at rest. Transformation between the two frames is given by 

x = x’ + U(x,y)t’, y = y’ + V ( x , y ) t ’ ,  t = t’. (7) 

aot’ = a’(x’,y’), (8) 

In frame F’ the shock position at time t’ is given by 

where a. is the sound speed. The shock velocity is perpendicular to the shock front 
and its magnitude is given by aoM’, where M‘ is the shock Mach number in the 
moving frame 

M’ = (a? + a y 2 .  (9) 

aot = a(x,y). (10) 

In the fixed frame F we have a similar relation describing the shock front position 

Following Whitham’s approach, we relate the two descriptions by means of the 
coordinate transformation and obtain 

aot = a’(x - U(X, Y)t, Y - w, Y ) O ,  

a = a’(x - u(x, Y )a(x, Y 1, Y - 4x9 Y )a(& Y )I, 

(11) 

(12) 

and thus 

where u = U/ao and u = V/ao. In the moving frame F’ the medium ahead of the 
shock is at rest and the equations of GSD apply. Thus the function a’(x’,y’) satisfies 
the equation 

where 
M’ = (a: + 

and 

A’ = f ( M ’ ) .  (15) 
We now use (12) and find the relations between the partial derivatives in the two 
coordinate frames. We have 

a 
- = (1 - u,a - ua,) - + (-0xa - uax) 
a 

ax ax’ 

a 
- = (-u,a - ua,) - + (1 - uya - 
a 

aY ax’ 

Solving for the a/ax’ and a/ay’ we obtain 

(17) 

a a 
(1 - uya - ua )- + (uxa + uax)- 

- Y ax aY a 

a a 
(uya + u q -  + (1 - uxa + uax)- _ -  a - ax aY 

ay’ (1 - uya - ua,)(i - u,a - ua,) - (u,a + va,)(u,a + ua,) 

- _  
axt (1 - n,a - ua,)( 1 - u,01 - ua,) - (uxa + ua,)(u,a + ua,) 
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Applying the latter to a’ we find 

where A is the determinant of (16) or denominator in (17). 

in the fixed frame: 
Equation (13) for c(’ in the moving frame is thus transformed to the following form 

a M’ ay + - ayux) 
ay ( A‘ 

) =o. 
A 

+( 1 - uxa - uax)- - 

The idea is now to transform (19) to the divergence form. It becomes 

V ( e / A )  = 0, (20) 
where e is the unit vector along the ray direction. Note that as discussed e is in 
general not normal to the shock front. This formality of stating (19) in divergence 
form is needed to develop the expressions for the ray unit vector e, area A’ and Mach 
number M’ in the moving frame. We thus obtain 

where 

Ex = (1 - auy - ayu) [a, + a(ayu, - axuy)] + (guy + ayu) [ay + a(axuy - a,.,)] , (22) 
and 

E y  = (1 - aux - axu) [ay + ~ ( a x u y  - a y ~ x ) ]  + ( U U X  + a,u) [ax + a(ayux - axuy)] . (23) 
The area A’ and the Mach number M’ in the moving frame are also expressed in 
terms of a, u and u and their derivatives: 

(24) 
(1 - auy - ayu)( l  - au, - axu) - (au, + axv)(auy + ayu) M‘ = 

2 1 12 
( [ a x  + a(ayux - .xVy)] + [ay + a(a,uy - ayu,)] ’) 

and 

Thus, as shown earlier by Whitham (1968) A’ is the area cut out by the ray tube and 
A is the normal cross-section. 

The flow field ahead of the converging shock is the one that is produced by the 
initial outgoing cylindrical shock. It is convenient to have as explicit a solution as 
possible for the associated flow field. Therefore the well-known blast wave solution of 

A = A’(e - n). (25)  
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a spherical explosion obtained numerically by Taylor (1950) and analytically by Sedov 
(1946) will be utilized here to describe the flow field ahead of the converging shock. 
Using Sedov's solution for the cylindrical blast wave, described in detail in Hayes & 
Probstein (1966, pp. 56-70), we obtain an expression for the radial component w(r)  
of the velocity field behind the shock at each location in the chamber. The Cartesian 
components of the velocity field u and u and their derivatives are then calculated in 
a standard manner as 

= w cos e, u = w sin 8, (26) 
(27) 

(28) 

It should be noted that the blast wave solution is used for convenience and is not 
an intrinsic necessity. It only strictly applies to very strong initial shocks with zero 
counter-pressure. However because the flow rapidly decays behind the initial front it 
is felt to be reasonably useful for our purposes. 

u, = w, cos2 8 + W / Y  sin2 8, uy = (w, - W/Y)  sin 8 cos 8, 

V ,  = (w, - W / Y )  sin 8 cos 8, uy = w, sin2 e + w / r  cos2 8. 

3. Reflection 
The creation of a polygonal-shaped shock is initiated by reflecting a cylindrical 

wave from a perturbed circular boundary. This is represented by the parametric form 
given by equation (1). 

The process starts with an outgoing cylindrical wave with a Mach number distribu- 
tion which is a function only of its radius. The shock Mach number of the outgoing 
wave just before the first contact with the reflector boundary is Mi. As only the initial 
contact points of the wave will have this Mach number, it is necessary to calculate the 
change in Mach number undergone by successive segments as they travel the distance 
from the initial position to the contact. We then calculate the Mach number Mb at 
each point of the wave front just before contact with the reflector boundary. This 
could be done using exact relations in certain special cases. In general it is necessary 
to use an approximate approach such as a calculation done by means of the A-M 
relation with GSD, i.e. 

Here Ai is the initial ray-tube area and Ab is the ray-tube area of the outgoing 
cylindrical wave just before the contact with the reflector boundary. The appropriate 
incident Mach number, i.e. Mb, and the ray-tube area of the wave at the reflector 
boundary Ah preceding the reflection are used to calculate the Mach number of the 
reflected wave. To perform this we make a coordinate transformation and consider 
the reflection process from the point of view of an observer moving with the point 
of intersection C between the incident shock and the reflector boundary, see figure 
2. By means of such a transformation the incident and reflected shocks are viewed 
from a reference frame in which they are stationary. The flow field, as seen by such 
an observer, is shown in figure 2 and represents a regular reflection of a stationary 
oblique shock. It is well known that in such a case the reflected shock wave is not 
specularly reflected, that is the angle f i 3  between the reflected wave and the boundary 
is not equal to PI, the corresponding angle between the incident shock and the 
boundary. Standard relations provide the angle p3 and also the reflected wave Mach 
number M,  just after the reflection, from f i 1  and Mb. For a detailed discussion see 
e.g. Anderson (1990). 
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FIGURE 2. Reflection of an incoming oblique shock from the boundary. 

These relations show that the flow field local to the point of contact is separated 
into three regions: region 1 ahead of the incident shock; region 2 behind the incident, 
or ahead of the reflected shock; and finally region 3 behind the reflected shock. This 
is shown in figure 2. The normal component of the Mach number M2,, behind the 
incident shock is given by the Mach number relation across the incident shock 

[ M; + 2/(y - 1) ] 1’2 

2 y / ( y  - 1)M; - 1 M2n = 

The deflection angle 0 is found by the usual 8-P-M relation, 

(Mi2 - 1)sin2P1 

M,?(y + cos 2P1) + 2 sin2 PI ’ 
tan0 = 

formulated here in terms of the normal component of the incident Mach number. 
The Mach number M2 behind the incident shock is then 

and the 0-P-M relation may again be used, in this case to obtain the shock wave 
angle P 2 ,  

= tan8. 1 M; sin2 P2 - 1 
(33) 

The reflection angle PI. and the Mach number of the reflected wave front M ,  at the 
moving point of contact are then easily obtained from the geometric relations 

(34) 

(35 )  
The above provides an algorithm for calculating the reflected shock parameters 

as the incident wave sweeps the boundary. This process terminates with a closed 
reflected shock, and no remaining incident front. Thus the Mach number M ,  of the 
reflected wave at each point of the reflector boundary just after the reflection, as 
well as the normal to the reflected wave front n, are now known quantities. The 
numerical procedure for calculating the propagation of the reflected shock uses many 
of the ideas in the scheme described by Henshaw et al. (1986). The main difference 
is that, as discussed above, account is taken of the non-uniform flow produced by 
the incident wave field which is ahead of the reflected shock. Some additional small 
modifications are intended for dealing with the shock front reflection itself. The 

P r  = P 3  == P 2  - 0, 

Mr = M2 sin 8 2 .  
and 
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RCURE 3. Propagation and construction of the reflected wave. 

previous work only involved diffraction rather than reflection effects. The ideas of 
shock wave tracking along the approximate rays, and representing the shock front 
position vj(t), j = 1, ..., N by a discrete set of points at each time t follows Henshaw 
et al. The differential equation for the shock front position is written in the usual ray 
trajectory form 

(36)  

where e j ( t )  is the unit vector along the ray that describes the shock path when it is 
moving into a non-uniform region. Note that in order to calculate e it is necessary 
to have expressions for the oncoming flow field and suitable gradients of this field. 
In the present paper this, as previously noted, is accomplished by using the blast 
wave solution for a cylindrically symmetric explosion to calculate both e and M’, the 
Mach number relative to the oncoming flow. Expressions for the components of e 
were given in the previous section. It is important to realize that the A ( M )  relation 
applies in the local frame fixed to the oncoming flow, i.e. to a frame in which the 
shock is propagating into a region that is locally at rest. To emphasize this one could 
distinguish the Mach number in the local rest frame and the area - Mach number 
relation, for example by denoting it as M’ and the function A’(M’). For the purposes 
of this presentation this formality is not needed, but of course it is accounted for in 
the actual numerical calculations. It is also worth stating that the shock is not normal 
to the ray direction e. 

As noted above the reflected wave front is constructed by finding the points where 
the outgoing wave first comes into contact with the reflector boundary see figure 3. 
Using the symmetry of the problem the development of the reflected wave is followed 
starting at one of these points. 

A new differential segment of the reflected wave is added as a line between the 
endpoint of the reflected wave front and the reflector boundary. The inclination of this 
added line segment is defined by the direction perpendicular to e,, i.e. the direction 
of the ray to the calculated reflected wave front at the endpoint. It is desirable to 
maintain as uniform a distribution of defining points along the developing wave as 

d 
-vj(t) = Mj(t)ej(t) ,  j = 1, ..., N ,  
dt 
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convenient. To this end the decision as to addition of a new segment of reflected wave 
is based on the existing point distribution. At each time step the distance between 
defining points, that is points on the developing rays, will change. This procedure of 
point distribution is different than that used by Henshaw et al. where no reflections 
were calculated. 

The Mach number distribution on the added line segment is the one calculated 
in accordance with consideration of the reflection relations and the appropriate 
transformation to a frame locally at rest with respect to the oncoming flow. This new 
wave front expanded by a small line segment is advanced along the ray direction with 
velocity proportional to the Mach number obtained by means of the A-M relation 
(with due respect to the appropriate frame transformation as noted above) 

where Aj(0) and M j ( 0 )  indicate the initial area and Mach number distribution. This 
procedure was necessary to provide the accuracy needed for a proper treatment of 
the oblique reflection process. 

An explicit second-order Runge-Kutta time-marching scheme is used to propagate 
the shock along a ray. The number of points N along the wave front is kept constant. 
This means that each time when a small line segment is added to the wave front, in 
accordance with the procedure described above, a spline approximation to the discrete 
wave front is calculated and the points on the shock front are linearly redistributed. 
The same procedure is applied to the Mach number distribution along the shock 
front. This new wave front with the corresponding Mach number distribution is then 
chosen as the initial one. Also a smoothing procedure described in Henshaw et al. 
(1986) is applied to the wave front at every n, time steps (usually 20), thus 

The smoothed shock front with the corresponding Mach number distribution is then 
again chosen as the initial shock front and saved. 

The results of the reflection calculations for n = 4 and n = 5 are shown in figures 4 
and 5 .  Figure 4(a)  shows the formation of the reflected shock on an exaggerated scale 
which emphasizes the local parabolic nature of the reflecting surface and the resulting 
tendency toward local planarity. It is also evident from this figure that the refined 
splining technique provides a smooth transition to the reflected shock geometry. 
Figure 4(b)  shows an overview on a more representative scale which indicates the 
tendency toward a polygonal form for the reflected wave. Finally figure 4(c) displays 
the relationship between the position of the reflected wave and the Mach number 
of the wave. The reader should observe that the actual scale of the Mach number 
variations is quite small and is exaggerated in the figures. Figure 5 presents the same 
type of information for the case of a boundary with pentagonal symmetry. The Mach 
number gradient indicates the formation of shock-shocks, therefore we see that the 
solution can be thought of as a periodic array of shock-shocks which rotate about 
the wave front. This will become evident when we observe families of shock front 
plots. 

4. Focusing 
We now possess the initial data needed to follow the development of the shock 

front as it converges into the centre of the cylindrical region. For the most part 
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FIGURE 4. Reflected wave fronts for n = 4. (a) Reflected wave fronts in a sector of a reflector. ( b )  
Fully reflected wave front within a reflector. (c) Mach number distribution on the fully reflected 
wave front. 

we follow Henshaw's method. The main modification is the account taken of the 
oncoming flow as described in the previous section. Formally the change is in the use 
of the ray direction e rather than the shock normal n. Also account must be taken 
of the modified A ( M )  relation suitable to the local advancing frame in which the 
oncoming flow is at rest. Thus apply a two-step leap-frog scheme to equation (36),  

(39) v i ( t  + At) = v i ( t  - At)  + 2AtMi(t)ei(t), i = 1, ..., N .  

With converging shocks the points on the shock front tend to cluster and spread 
out in compressive and expansive regions of the shock front. Following Henshaw we 
delete and insert points on the shock. The number of points along the shock front N 
now varies. To reduce the high-frequency oscillations the same smoothing procedure 
(38) as in the previous section is applied every n, time steps (usually 20). It is desirable 
to calculate the spline approximation to the discrete points along the shock front and 
the Mach number distribution and then redistribute the points homogeneously along 
the front. The number of points chosen in such a redistribution N ,  (usually 500) is 
constant. The spline approximations are calculated after the smoothing procedure 
is applied to the shock front. These smoothed shock fronts and Mach number 
distributions are then used as initial ones and are stored. 

The Courant-Friedrichs-Lewy stability condition has to be checked and satisfied. 
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FIGURE 5. Reflected wave fronts for n = 5. (a) Reflected wave fronts in a sector of a reflector. (b) 
Fully reflected wave front within a reflector. (c) Mach number distribution on the fully reflected 
wave front. 

As pointed out by Schwendeman & Whitham (1987) the average spacing between the 
points along the wave front will decrease for converging shocks. We therefore choose 
the time-step increment At so that the above mentioned stability condition is 

- < K = 0(1), 
Asmin 

(40) 
At 

where usually K = 0.15 is satisfied at each integration step. Since the spacing between 
the points on the wave front As will decrease through the convergence process so will 
the time-step increment At. The periodicity condition for the converging shocks 

rl(t)  = Odt), (41) 

used by Schwendeman & Whitham (1987) is also applied in the present calculations. 
Shock front positions of the converging shocks, advancing into an inner region of 

the reflector with the flow field created by the outgoing cylindrical shock, are shown in 
figure 6. Four different types of reflector boundaries with n = 4,5,6 and 8 are plotted. 
It is clearly seen that initially smooth curved forms of the reflected waves tend to 
become planar, build corners with high curvature and eventually form polygonal-like 
shock fronts. When such shock fronts are formed they are reoriented to the reflector 
boundary, that is corners are formed opposite to the flat portions and plane sides 
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FIGURE 6. Successive positions for the converging shock fronts with initial Mach number M = 2, 
for n = 4,5,6 and 8. 

opposite to the smooth corners of the reflector. All these properties of the converging 
shocks with the exception of the initial Mach number distribution, are quite similar 
to the case of pure polygonal shapes of the initial front, investigated in detail by 
Schwendeman & Whitham (1987). According to this study these polygonal-shaped 
shock fronts once they are formed, will be repeated and reoriented during the later 
stages of the convergence process. It is important to realize that the situation in this 
case is slightly different as instead of a pure polygonal boundary we have a boundary 
with high curvature at the 'corners'. The spline technique used in the calculations 
maintains the smoothness of the geometry. In the present work we are interested 
what will result in an actual experiment where the incoming geometry is produced 
by reflection off a perturbed boundary. Schwendeman & Whitham do treat a case in 
which the initial shock shape is perturbed from one with pure polygonal form and 
which results in convergence to a sharp corner. The shape seen in this calculation, 
which is into a region at rest, is quite similar to the cases seen here. 

As a comparison calculations were done for higher values of the initial Mach 
number than M = 2 which was used for the case shown in figure 6. In figure 7 
we compare the focusing process for the cases n = 4 and n = 5 with initial Mach 
numbers M = 2 (figure 7a,c)  and M = 5 (figure 7b,d).  It should be mentioned at this 
point that the difference in the values of the reflected Mach number between these 
two cases is not great, since the maximum value of the reflected Mach number for 
any value of the inital Mach number cannot exceed M RZ 2.6. The main difference in 
the pattern of the converging process here is due to the difference in the strength of 
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FIGURE 7. Converging shock waves for n = 4 and n = 5 with initial Mach numbers: 
(a,c) M = 2; ( b , d )  M = 5.  

the flow ahead of the shock. A higher value of the Mach number of the flow ahead 
of the shock tends to enhance the effect of the shock transformation as seen here. 

The reflector boundary together with two shock fronts and corresponding Mach 
number distributions for ~t = 4 are shown in figure 8. One of the shock fronts in 
each figure is chosen at the beginning of the convergence process and is thus in the 
vicinity of the reflector boundary, and the second one is chosen at a later time during 
the formation of a square shock front. Figures S(a) and 8(b) show the shock fronts 
and corresponding Mach number distributions of the calculations with and without 
flow ahead of the converging shocks, respectively. This figure shows similarities and 
differences in the converging processes of shocks with and without flow ahead. The 
formation of a polygonal-shaped shock is of a similar nature in these two cases. 
Comparing the shock fronts at the chosen moments, in both cases one may still 
observe flat portions on the shock fronts that are parallel with the flatter portions of 
the reflector boundary. These will shortly disappear and a corner of a square shock 
opposite to the flatter side of the reflector will be formed. This may be explained by 
the Mach number distributions shown in the same figure. The value of the Mach 
number on the flat portions parallel to the reflector boundary is much less than on 
the increasing flat portions of the shock front corresponding to the corners of the 
reflector boundary. The portions of the shock front with lower Mach number values 
are travelling slower and are therefore absorbed by the faster parts of the shock. 

The difference between the cases with and without flow ahead of the shock is also 
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FIGURE 8. Two shock positions with corresponding Mach number distributions for n = 4. 
(a) Calculations with flow ahead of the shock and (b)  with no flow ahead of the shock. 

clearly seen here. We may see that a shock front comparable to the one in figure 8(a) 
is formed at a later instant and thus further into the reflector in the case of no flow 
ahead shown in figure 8(b). Also the Mach number distribution in figure 8(a) indicates 
the influence of the flow field ahead of the shock. Mach number is increased on the 
portions of the shock corresponding to the corners of the boundary and decreased on 
the portions corresponding to the flatter parts of the boundary. In the case of no flow 
ahead, figure 8(b), there is almost no decrease in the values of the Mach number. This 
is due to the fact that flow ahead of the shock is considerably reduced by the time 
the shock front has reached the position in the inner part of the chamber as shown 
in figure 8(a). The high-frequency fluctuations on the upper portions of the Mach 
number distribution seen in figure 8 are of a numerical nature and originate from 
the numerical solution of the nonlinear area-Mach number relation. Their influence 
on the form of the shock front is of minor importance as long as their relative value 
compared to the jump in the Mach number distribution is small. 

5 .  Conclusions 
The primary purpose of this work was to examine the feasibility of producing 

polygonal shocks by reflecting cylindrical waves off a perturbed circular boundary. 
It was known from the previous work of Whitham that shocks with corners can 
be stable in form. The proposed geometry introduces a complication that requires 
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FIGURE 9. Successive shock positions for the converging shock fronts with initial Mach number 
M = 2: (a,b) with and ( c , d )  without flow ahead. 

some minor modifications of GSD as formulated by Whitham due to the flow field 
created by the initial incident cylindrical shock. The point of departure was Whitham 
(1968) which generalized the GSD equations to account for a uniform flow ahead 
of the shock. In the present case the flow is not uniform and the technique of 
transforming to a frame moving locally with the advancing fluid is proposed. This 
introduces complications with respect to keeping track of the relations between the 
laboratory frame and the frame in which the unmodified GSD equations are valid. 
Because numerical procedures are used this does not present any practical problem 
as it would in a purely analytical approach. 

Other questions arise as to the validity of the basic GSD concept in such a frame. 
While the shock discontinuity is inertialess the area-Mach number relations depend 
on a region around the shock front and thus involve inertial effects which are ignored 
here. This is felt to be consistent with the general ad-hoc nature of the GSD approach 
and ultimately must be judged by the experimental evidence. In point of fact the 
treatment of this problem with no consideration of flow ahead of the shock leads to 
very similar results. One reason for this is that in the blast-type solution used most 
of the significant flow effects occur in the period during and right after reflection as 
the flow amplitude rapidly dies down. To understand the differences introduced by 
considering the flow field ahead of the shock a plot of the convergence process for 
the cases n = 5 and n = 6 with the initial Mach number M = 2 is given in figure 9. In 
figures 9(a) and 9(b) we take account of the flow field ahead created by the outgoing 
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cylindrical wave. Figures 9(c) and 9(d) show calculations in which this oncoming 
flow field is ignored. As discussed above we can see that overall the nature of the 
convergence process in these cases is similar and results in the formation of polygonal 
shock fronts periodically changing in orientation. The difference between the cases of 
taking into account flow ahead of the shock and disregarding it is also clearly seen 
from this figure. In case of the flow ahead of the shock as in figures 9(a) and 9(b) 
the formation of the polygonal shock starts earlier than in the case of no flow ahead. 
It should be stressed at this point that the later stages of the converging processes 
are more similar in these two cases. This is due to the fact that the oncoming flow 
produced by the outgoing cylindrical shock is gradually reduced as the distance from 
the outgoing shock is increased. This difference becomes even greater when the value 
of the initial Mach number is increased as discussed earlier in this section. 

In conclusion it appears that the proposed mechanism for producing a polygonal 
reflected shock from a perturbed cylindrical boundary is potentially feasible. In 
addition we have examined a possibly useful extension of conventional GSD for the 
treatment of propagation into non-uniform flow regions. It is stressed that this is 
somewhat ad-hoc and requires experimental investigation in order to asses its proper 
validity. More ordered approaches to GSD type theories, such as advocated by Prasad 
(1992), might also be used. The simplicity and extensively examined results of GSD 
are retained by the present extension. Experiments with devices of the type suggested 
may be of help in settling this matter. 

The authors would like to thank the Swedish Board for Technical Research (TFR) 
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